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Generalized �-Sampling Imaging
Fang-Cheng Yeh, Van Jay Wedeen, and Wen-Yih Isaac Tseng*

Abstract—Based on the Fourier transform relation between dif-
fusion magnetic resonance (MR) signals and the underlying diffu-
sion displacement, a new relation is derived to estimate the spin
distribution function (SDF) directly from diffusion MR signals.
This relation leads to an imaging method called generalized -sam-
pling imaging (GQI), which can obtain the SDF from the shell
sampling scheme used in -ball imaging (QBI) or the grid sam-
pling scheme used in diffusion spectrum imaging (DSI). The accu-
racy of GQI was evaluated by a simulation study and an in vivo
experiment in comparison with QBI and DSI. The simulation re-
sults showed that the accuracy of GQI was comparable to that of
QBI and DSI. The simulation study of GQI also showed that an
anisotropy index, named quantitative anisotropy, was correlated
with the volume fraction of the resolved fiber component. The in
vivo images of GQI demonstrated that SDF patterns were similar
to the ODFs reconstructed by QBI or DSI. The tractography gen-
erated from GQI was also similar to those generated from QBI
and DSI. In conclusion, the proposed GQI method can be applied
to grid or shell sampling schemes and can provide directional and
quantitative information about the crossing fibers.

Index Terms—Diffusion magnetic resonance imaging (MRI), dif-
fusion -space imaging, generalized -sampling imaging, quantita-
tive anisotropy.

I. INTRODUCTION

D IFFUSION magnetic resonance imaging (MRI) has been
shown to characterize diffusion displacement of water

molecules and reveal the underlying microstructure [1], [2].
The diffusion pattern can be modeled by the diffusion tensor
[3], [4], which is able to demonstrate the gross fiber orientation
and provide quantitative indices such as fractional anisotropy
(FA) and diffusivity [5], [6]. As diffusion tensor imaging (DTI)
has been widely applied in clinical research, studies have
also shown that the tensor model cannot resolve the regions
with complex fiber orientations, such as crossing or branching
patterns [7], [8]. To better characterize the complicated fiber
patterns and discern fiber orientations, several methods have
been proposed, and these methods can be categorized into
model-based methods and model-free methods.

Manuscript received January 26, 2010; revised March 02, 2010; accepted
March 02, 2010. Date of publication March 18, 2010; date of current version
September 01, 2010. This work was supported by the National Science Council,
Taiwan (NSC95-2752-M-002-018-PAE). Asterisk indicates corresponding au-
thor.

F.-C. Yeh is with the Department of Biomedical Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania, PA 15213 USA (e-mail:
frankyeh@cmu.edu).

V. J. Wedeen is with the Martinos Center for Biomedical Imaging, Depart-
ment of Radiology, Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA 02129 USA (e-mail: van@nmr.mgh.harvard.edu).

*W.-Y. I. Tseng is with the Department of Medical Imaging, National Taiwan
University Hospital, Taipei 100, Taiwan (e-mail: wytseng@ntu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2010.2045126

Similar to the DTI approach, model-based methods rely
on a more complex model to characterize the diffusion MR
signals acquired by high angular resolution diffusion imaging
(HARDI), a scheme that samples data on a shell in the diffu-
sion-encoding space, dubbed -space [9]. These model-based
methods include the multiple Gaussian model [9]–[11],
generalized diffusion tensor [12], [13], spherical harmonic
decomposition [14], continuous axially symmetric tensors [15],
composite hindered and restricted model [16], [17], diffusion
kurtosis model [18]–[20], and spherical harmonic deconvolu-
tion [21]–[24]. These methods can delineate crossing patterns
and estimate the directions of crossing fibers. The resolved
fiber directions can be used in fiber tracking and may facilitate
the mapping of brain connectivity [25].

Model-free methods, also called -space imaging methods,
are based on the Fourier transform relation between the dif-
fusion MR signals and the underlying diffusion displacement
[26]. These methods tackle the problem by acquiring the ori-
entation distribution function (ODF) of the diffusion displace-
ment. From the ODF, the underlying crossing patterns of the
fibers can be inferred and the microstructure property evalu-
ated in terms of generalized fractional anisotropy (GFA) [27],
[28] or diffusion anisotropy [29]. Several -space reconstruction
methods have been proposed to reconstruct ODF from diffusion
MR signals. Tuch introduced -ball imaging (QBI) [27], which
uses Funk–Radon transform to reconstruct ODF from a HARDI
shell dataset. The Funk–Radon transform relation constitutes
the basis of the QBI reconstruction method and led to further
studies that reconstructed QBI through spherical harmonic de-
composition to achieve better accuracy and efficiency [30], [31].
Another -space imaging method, diffusion spectrum imaging
(DSI) [32], [33], was also proposed as a way to reconstruct ODF
from MR signals. The diffusion data of DSI were acquired by
grid sampling scheme, and the Fourier transform was applied to
the -space data to estimate the underlying diffusion displace-
ment pattern for further calculation of the ODF.

Although all -space imaging methods are able to measure
diffusion ODF, some limitations still exist. The Funk–Radon
transform relation proposed in the QBI method only partially
exploits the relation between the MR signals and diffusion dis-
placements. This limitation is obvious because the acquired dif-
fusion MR signal is in fact contributed by the diffusion displace-
ments in all directions, not just the displacements perpendic-
ular to the diffusion gradient vector. As a result, the -ball ODF
may not be an accurate ODF that considers all diffusion dis-
placements, as pointed out by Barnett et al. [34]. On the other
hand, DSI is able to characterize the diffusion probability den-
sity function (PDF) by applying the Fourier transform to the MR
signals in the -space; however, it still relies on numerical es-
timation to get the ODF. The estimation often encounters the
truncation artifacts in the Fourier transform, and a Hanning filter
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is often needed to smooth the PDF [35], [36]. These numerical
errors can be minimized if the ODF can be estimated directly
from the measured MR signals.

In view of these limitations, we investigated the Fourier trans-
form relation between the diffusion MR signals and the diffu-
sion displacement of the spins, thereby deriving a new relation
between spin distribution function (SDF) and the MR signals.
Unlike the diffusion ODF, which is a probability distribution
of the diffusion displacement, the SDF represents a quantitative
distribution of the spins undergoing diffusion and can be com-
pared across different voxels. This finding led to a generalized
-sampling imaging method (GQI), which could be applied to

a wide range of -space datasets, such as those acquired by the
shell or grid sampling schemes. In this study, we conducted a
simulation study and an in vivo study to examine the accuracy
of GQI in comparison with QBI and DSI. A new quantitative
index was also investigated in the simulation study, revealing
its relation with fiber volume fraction.

II. MATERIALS AND METHODS

A. Theory

Combined -space and -space imaging is based on the
Fourier transform relation between the diffusion MR sig-
nals , spin density , and the average propagator

in the diffusion time [26]

(1)

where is the voxel coordinate, is the diffusion displacement,
, with being the gyromagnetic ratio of protons,

and and being the strength and duration of the diffusion-en-
coding gradient, respectively. The -space reconstruction gives
us diffusion weighted image data , which reveals the un-
derlying average propagator of each observed voxel

(2)

To represent the average propagator in the scale of spin quan-
tity, we introduce a spin density function , which is
estimated by scaling the average propagator with
the density function ; i.e., . Be-
cause is real, is symmetric in the -space, i.e.,

. The spin density function can
be calculated by applying the cosine transform on

(3)

We further estimate the quantity of spins that undergo the dif-
fusion in a particular direction , resulting in the SDF

(4)

where is the diffusion sampling length. Equation (4) shows
that SDF is an orientation distribution function of the spin
quantity because it is obtained from the spin density function

. SDF is also equal to diffusion ODF multiplied by

the spin density. By including the spin density, the values of
SDF have a unified reference, thus offering the possibility of
comparing the distribution values across different voxels. In our
in vivo experiment, the diffusion weighted images had a heavy

-weighted effect because the echo time was around 100 ms.
To eliminate the effect and obtain more accurate estimation
of SDF, each diffusion weighted image could be divided by the
b0 image and then multiplied by a proton density map.

Combining (3), (4), and integrating the distance parameter
from 0 to , we obtain the relation between the acquired

diffusion weighted images and SDF

(5)

where for all except 0, and .
Equation (5) shows that the overall SDF is composed of a se-
ries of basis SDFs in the form of sinc functions weighted by

. The shape of the basis SDF is determined by the value
of . A higher value of presents a sharper contour,
and vice versa. Equation (5) allows us to calculate the summa-
tion of all the basis SDFs offered by a sampling scheme, yielding
the measured SDF

(6)

where is a constant area term for the quadrature. Equation (6)
is the theoretical basis of the GQI reconstruction method, which
is applicable to any diffusion sampling scheme. Furthermore,
the SDF can be scaled by a constant value such that the SDF
of pure water diffusion is 1. To estimate the , in practice, the
SDF of cerebrospinal fluid (CSF) could be used as a reference
because CSF resembles free diffusion of pure water.

Note that this SDF scaling is different from the ODF normal-
ization used in QBI and DSI. The ODF normalization is per-
formed independently for each voxel to fulfill the requirement of
a probability density function. The SDF scaling, instead, is ap-
plied to all voxels simultaneously, and thus the scaled SDFs can
still be compared across different voxels. Nonetheless, if diffu-
sion ODF is preferred, normalizing the SDF will turn it into the
diffusion ODF.

B. The Relation With Other-Space Methods

Comparing the reconstruction equations of GQI and QBI, we
found that if the diffusion sampling length in (5) is set to
infinity, the sinc function in the equation approximates a delta
function, resulting in the same Funk–Radon transform used by
QBI. Such a feature leads us to suggest that QBI could be viewed
as a special case of GQI that has an infinite diffusion sampling
length, and GQI is a general approach that allows a finite diffu-
sion sampling length.

On the other hand, GQI and DSI also share the same the-
oretical basis: the Fourier transform relation between the dif-
fusion MR signals and the underlying diffusion displacement.
This may suggest that the GQI and DSI reconstruction could
result in similar diffusion patterns. However, they still differ in
their numerical approaches. In DSI, Fourier transform is applied
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to the -space data, and then the diffusion ODF is calculated
by the numerical integration on the transformed grid data. GQI,
instead, is based the result of the mathematical reduction that
combines the Fourier transform and ODF calculation, thereby
deriving a direct relation between the diffusion signal and SDF.
Such an approach avoids the procedures of Fourier transform
and the subsequent interpolation on the grid data points.

Another difference between DSI and GQI is their ODF regu-
larization approaches. DSI reconstruction often relies on a Han-
ning filter to reduce the truncation artifact in Fourier transform,
an artifact that gives rise to a spiky appearance in the ODF. GQI,
instead, offers an explicit control parameter to minimize the
artifact. Though it is not clear which approach leads to better
angular resolution, the explicit parameter provided by GQI
ensures that the reconstruction can be reproduced exactly for
further comparison with other methods.

Yet another major difference between DSI and GQI is that the
definition of ODF in DSI includes a distance weighting

(7)

This weighting term is a Jacobian determinant that results from
transforming the average propagator to the diffusion ODF.
We can further apply mathematical reduction to simplify the
numerical integration in (7) and obtain a different basis function
for GQI

(8)

where is the basis SDF resulted from the weighting.
Nonetheless, there is no guarantee of which weighting approach
is a better estimation for fiber orientations. The accuracy for
different weighting strategies requires further investigation.
In this study, the GQI reconstruction only used the sinc function
as the basis function for reconstruction.

C. Diffusion Sampling Length

The value of the diffusion sampling length in (4) offers
a way to adjust the range of diffusion displacement to be in-
tegrated. A lower covers spins with less diffusion displace-
ment, resulting in coarser SDFs. A higher , on the other hand,
covers a larger range and results in sharper SDFs. With such fea-
tures, can serve as a regularization parameter to adjust the
coarseness of the SDF.

The choice of can be made by estimating the diffusion
length. If the underlying diffusion follows Gaussian distribu-
tion, the diffusion length is , where is the diffusion
coefficient and the effective diffusion time .
The diffusion length can be used as the unit of , i.e.,

, where is an adjustable factor. If we choose
, then 80% of the diffusion distribution will be encompassed

in the SDF. Under the restricted diffusion condition, the per-
centage of coverage will even be higher. From experience, we
found that setting between 1 and 1.3 yields good reconstruc-

tion results. A higher than 1.3 may increase the sensitivity to
noise and makes the reconstruction unfavorable.

The introduction of the has another benefit. We can replace
the in (6) by , resulting in the following recon-
struction equation:

(9)
where is the -value of the corresponding diffusion en-
coding , for , and is the diffusion gra-
dient direction in unit vector. This reconstruction equation uses
-values and as the input instead of the values. Since the
-value is commonly used in most diffusion pulse sequences, it

is more convenient to use (9) to perform GQI reconstruction.

D. Applicable Sampling Schemes

Although GQI can be applied to any sampling schemes to re-
construct SDF, the reconstruction result may not be correct if a
sampling scheme is not balanced. One way to check this condi-
tion is to test whether the sampling scheme fulfills the balanced
requirement: the MR signals obtained from an isotropic diffu-
sion should be reconstructed to an isotropic SDF. Under this
paradigm, we propose a quick numerical test to check whether
a sampling scheme is acceptable for GQI reconstruction. As-
suming that the numerical MR signals are generated from an
isotropic diffusion tensor , we expect the MR signal to be re-
constructed to an isotropic SDF, which can be calculated by the
following formula, where is the effective diffusion time

(10)
To fulfill the balanced requirement, the reconstructed SDF

should be nearly isotropic, which can be examined by
calculating the variance of the SDF. The balanced requirement
provides a framework to design an acceptable sampling scheme,
thereby facilitating the development of a GQI sampling scheme
that is optimized for clinical use. Also, this requirement can
be used as a necessary condition for obtaining correct recon-
struction; however, further study is still needed to determine
whether this requirement is sufficient.

E. Quantitative Anisotropy of the Spin Distribution

In this paper, we defined an index called quantitative
anisotropy (QA) to quantify the spin population in a specific
direction. Unlike FA or GFA, which is a metric for each voxel,
QA is a metric for each resolved fiber population. This allows
QA to be compared to fiber specific information such as the
volume fraction of each individual fiber. The QA in a resolved
fiber orientation is defined by the SDF value at the resolved
fiber orientation minus the background isotropic diffusion
component

(11)

where is the SDF scaling constant. To estimate the isotropic
component, in this study, we used the minimum value of as
an approximation.
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F. Simulation Study

We performed a simulation study to validate the accuracy of
GQI by comparing it with QBI and DSI. The simulation model
was based on a mixed Gaussian model consisting of a compo-
nent of isotropic diffusion and two fiber populations [9], [14]

(12)

where and are the -value and the unit vector of the ap-
plied diffusion gradient, respectively, and the volume frac-
tions of the two fiber populations, and is the volume frac-
tion of the isotropic diffusion. , , and are the diffu-
sion tensor matrices for these three diffusion components. We
simulated this model with a variety of parameter combinations
so that we would not have bias on any parameter. Also, to de-
couple the relation between and , we also added various
volume fractions of background isotropic diffusion in the sim-
ulation model, the . The simulation model was then used to
generate diffusion weighted images with noise added. The im-
ages followed the same reconstruction flow as the practical con-
dition. In the simulation study, the was 0.1, 0.2, 0.3, 0.4,
and 0.5. The volume fractions of the major fibers were assigned
from 0.5 to 1.0 , which was further divided
into 64 divisions. The remaining volume was occupied by the
minor fiber population. The crossing angles between major and
minor fibers ranged from 30 to 90 , divided into 64 divisions.
The mean diffusivity was 1.0 mm , and the FA values
for both of the simulated fibers were 0.3, 0.4, 0.5, and 0.6. A
total of 81 920 parameter combinations were simulated with Ri-
cian noise [37] added under . Each parameter
combination further underwent five simulation trials, resulting
in 409 600 simulation scenarios. For QBI, each simulation sce-
nario generated 252 MR signals according to a 252-direction
b-table with value mm . The sampling directions
of the b-table were obtained from a five-fold tessellated icosa-
hedron. For DSI, a 203-point grid sampling scheme with a max-
imum -value of 4000 mm was used to generate the MR sig-
nals. The grid sampling points were obtained by iterating the
integrals , , and satisfying , which is
according to the optimum sampling scheme recommended by
Kuo et al. [36].

The simulated QBI signals were reconstructed by the spher-
ical harmonic approach [31] with a regularization term based
on the Laplace–Beltrami operator. As recommended by De-
scoteaux et al. [31], the spherical harmonic order was set to
8 and the regularization parameter was set to 0.006. The ob-
tained ODF had 362 directions generated from a six-fold tessel-
lated icosahedron, offering an angular resolution of around 9 .
The simulated DSI signals were placed in a 16 16 16 ma-
trix ( value ) with zero padding. To eliminate trun-
cation artifacts, smoothing was performed by applying a Han-
ning filter of cosine ( ), where was the -space distance
from the origin, as proposed in an optimization study [36]. The
diffusion PDF was obtained by discrete Fourier Transform and
transformed into a 362-direction ODF by integration in each
sampling direction. Both QBI and DSI datasets were also re-
constructed by GQI method with diffusion sampling lengths

of 35, 45, 55, and 65 m, under the assumption that the diffu-
sion time was 80 ms (diffusion length m). The -values
were estimated from the -values by assuming that the diffusion
gradient duration was 35 ms and that the MR signals were
obtained using a standard pulsed-gradient spin-echo pulse se-
quence, where and . Using
the reconstruction methods mentioned above, the fiber orienta-
tions were determined by the local maxima of the reconstructed
ODFs or SDFs.

The performance of a reconstruction method was evaluated
by its ability in resolving major and minor fibers. The major
fiber was defined by the largest local maximum (the global max-
imum) on a SDF or ODF. The minor fiber was defined by the
second largest local maximum. In this study, we limited the fiber
population in the two-fiber condition to simplify comparison.

To evaluate the ability to resolve major fibers, we calculated
the average of the angular deviation, which was the inner angle
between the resolved fiber orientation and the actual orientation.
A lower value in the average angular deviation suggested better
performance.

Evaluating the ability to resolve minor fibers is more com-
plicated. A reconstruction may fail to resolve the minor fiber,
and the angular deviation cannot be calculated. Also, inade-
quate smoothing could result in false minor fibers that present
a spurious increase in performance. To avoid giving credit to
false fibers and to handle the situation of missing fibers, we
defined a condition called “successful resolving,” which only
gives credit to the cases in which minor fibers were accurately
resolved. When the resolved orientation was in the same discrete
orientation as the actual one, the condition was counted as “suc-
cess;” on the contrary, when the minor fiber could not be iden-
tified or the resolved orientation was not the same as the actual
one, the condition was counted as “failure.” The performance
of a method was then evaluated by the percentage of successful
trials. Higher percentages indicated better performance.

One should note that the fiber orientations are discretized to
362 sampling orientations, so the same orientation occurring in
the “success” condition implies that the angular deviation of the
resolved minor fiber is less than a half of the ODF resolution, ap-
proximately 4 –5 . Therefore, it is expected that the percentage
of successes may not be high.

G. In Vivo Experiments

A 27-year-old volunteer without any known neurological
disease was scanned on a 3T scanner (TIM Trio, Siemens,
Erlangen, Germany). The subject signed an informed consent
form approved by the institutional review board. The scan was
done with a single-shot twice-refocused echo planar imaging
(EPI) diffusion pulse sequence and a 12-channel head coil.
The field of view was 240 240 mm, matrix size 96 96,
slice thickness 2.5 mm (no gap), number of slices 40, and
voxel size 2.5 2.5 2.5 mm. Under the prescribed spatial
parameters, a 252-direction shell sampling scheme and a
203-point grid sampling scheme were scanned subsequently.
For the 252-direction shell scheme, the value mm ,

ms, average number , resulting in a
scanning time of 30 min. For the 203-point grid scheme, the
maximum mm , ms,
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Fig. 1. Simulation results of different settings in resolving major and minor fibers. Results of QBI and GQI reconstruction methods applied to the same simulated
252-direction shell dataset: (a) the angular deviation of major fibers, and (b) the percentage of success in identifying minor fibers. Results of DSI and GQI recon-
struction methods applied to the same simulated 203-point grid dataset: (c) the angular deviation of major fibers, and (d) the percentage of success in identifying
minor fibers. The error bars in (a) and (c) represent the standard deviations of the major fiber deviation.

TABLE I
SUMMARY OF THE SIMULATION RESULTS

TABLE II
SUMMARY OF THE SIMULATION RESULTS

and the results of GQI [Fig. 3(b)] are similar, as are those of
DSI [Fig. 3(c)] and GQI [Fig. 3(d)].

The QA maps of the in vivo images are presented in Fig. 4.
Fig. 4(a) and (b) show the QA maps of the major fibers, and
Fig. 4(c) and (d) show the QA maps of the minor fibers. These
QA maps were generated by applying the GQI reconstruction
method on the in vivo 203-point grid dataset. The QA maps of
the major fibers revealed regions with predominant fiber tracts,
such as the corpus callosum, internal capsule, and cerebral pe-
duncle, all of which showed higher QA values than other white
matter regions [Fig. 4(a) and (b)]. On the other hand, the QA
maps of the minor fibers revealed regions having crossing fibers,

such as the pons containing pontocerebellar tracts and corti-
cospinal tracts, and the centrum semiovale containing the corpus
callosum, superior longitudinal fasciculus, and corona radiata
[Fig. 4(c) and (d)].

In the balanced requirement experiment, the reconstructed
SDFs of the subsampled shell dataset are presented in Fig. 5,
and the reconstructed SDFs of the subsampled grid dataset are
presented in Fig. 6. Both figures were focused on the same
three-way crossing region in the centrum semiovale of the
right hemisphere, and the SDFs of the original datasets without
subsampling are also presented for comparison. As presented
in Fig. 5, the 126-direction and 64-direction shell datasets had
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Fig. 2. Coronal view showing centrum semiovale where the callosal fibers,
corticospinal tract and superior longitudinal fasciculus form a three-way
crossing pattern. The slice position is indicated on the 3-D volume rendering of
white matter. The ODF or SDF maps are generated by different combinations of
methods and datasets. Panel (a) is the 252-direction shell dataset reconstructed
by QBI, and panel (b) is the same dataset reconstructed by GQI. Panel (c) is the
203-point grid dataset reconstructed by DSI, and panel (d) is the same dataset
reconstructed by GQI. The directions of the ODF or SDF are pseudo-colored:
red in the left–right direction, green in the anterior-posterior direction, and blue
in the axial direction. The gray-leveled background is the mapping of GFA. In
each panel, a representative ODF or SDF in the same position is focused to
facilitate visualization (inset).

Fig. 3. Axial view of the centrum semiovale where callosal fibers and the supe-
rior longitudinal fasciculus form a two-way crossing pattern. The ODF or SDF
maps are generated as follows: panel (a) is the shell dataset reconstructed by
QBI, panel (b) is the same dataset reconstructed by GQI, panel (c) is the grid
dataset reconstructed by DSI, and panel (d) is the same dataset reconstructed by
GQI. The images are displayed in the same way as those in Fig. 2.

contours similar to the original ones, although the contours
were duller. In the 32-direction dataset, although the crossing
pattern was not observed in the resulted SDFs, they still
maintained consistent overall orientations. Furthermore, even
though the images in the 32-direction dataset were acquired by
a -value of 4000 mm , they could only be reconstructed with
a lower value of diffusion sampling length in order to fulfill
the balanced requirement. As a result, the reconstructed SDFs
were much duller, in the same way as the SDFs reconstructed
from lower -value images. In Fig. 6, likewise, the 102-point,
41-point, and 17-point grid datasets showed consistent overall

Fig. 4. Mappings of the quantitative anisotropy (QA) values of the resolved
major fibers (a), (b) and the minor fibers (c), (d). The position of coronal slice
and axial slice are similar to those shown in Figs. 2 and 3, respectively. Note that
QA maps of the major fibers highlight the regions with predominant fiber tracts
such as the corpus callosum (cc), internal capsule (ic), and cerebral peduncle
(cp). QA maps of the minor fibers highlight regions with crossing fibers such as
the pons (p) and centrum semiovale (cs). In the QA maps of the minor fibers,
the QA value is assigned 0 if a voxel has no minor fibers.

orientations with the original ones, but appeared duller as the
sampling points decreased.

C. Tractography

In this section, we present the tractography of QBI, DSI, and
GQI as a qualitative comparison. The association fiber tracts
that pass through the centrum semiovale are shown in Fig. 7,
where directional color is used to present the local orientation of
the fiber tracts. The tractography generated by QBI is presented
in Fig. 7(a), and GQI applied to the same data is presented in
Fig. 7(b). Similarly, the tractography generated by DSI is pre-
sented in Fig. 7(c), and GQI applied to the same data is presented
in Fig. 7(d). The location of the centrum semiovale is presented
by a yellow-colored region. On the left side of Fig. 7, the surface
rendering of the white matter and the fiber tracts are presented
together to demonstrate their relative locations. In Fig. 7(a)–(d),
all the rendered tracts show a generally similar pathway; the
arcuate fasciculus presents an arc-like fiber bundle connecting
the Broca’s and Wernicke’s areas, and the termination points
at the Wernicke’s area present a consistent pattern. However,
minor differences can still be observed among these four ren-
dered tracts, such as fibers connecting to the angular gyrus (the
green fibers that extend to the right side) or the fibers going to
the Broca’s area.

Fig. 8 shows the tractography of projection fiber tracts
that pass through the centrum semiovale. The tractography
generated by QBI is presented in Fig. 8(a), and GQI applied
to the same data is presented in Fig. 8(b). The tractography
generated by DSI is presented in Fig. 8(c), and GQI applied




